A Perron-type Theorem on the Principal Eigenvalue of Nonsymmetric Elliptic Operators
نویسنده
چکیده
We provide a proof for a Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators based on the strong maximum principle. This proof is modeled after a variational proof of Perron’s theorem for matrices with positive entries that does not appeal to Perron-Frobenius theory.
منابع مشابه
On the principal eigenvalue of elliptic operators in R and applications
Two generalizations of the notion of principal eigenvalue for elliptic operators in RN are examined in this paper. We prove several results comparing these two eigenvalues in various settings: general operators in dimension one; self-adjoint operators; and “limit periodic” operators. These results apply to questions of existence and uniqueness for some semi-linear problems in all of space. We a...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA Proof of the Existence and Simplicity of a Maximal Eigenvalue for RuellePerronFrobenius Operators
We give a new proof of a result due to Ruelle about the existence and simplicity of a unique maximal eigenvalue for a Ruelle^Perron^Frobenius operator acting on some Ho« lder continuous function space. Mathematics Subject Classi¢cations (1991): Primary 58F23, Secondary 30C62. Key words: locally expanding, mixing, Ruelle^Perron^Frobenius operator, maximal eigenvalue. 1. Introduction Ruelle's The...
متن کاملSpring School on Nonlocal Problems and Related PDEs Positivity Preserving Results and Maximum Principles
The general setting that we will discuss, can be written as follows: Mu = f. Here M : X → Y is some given operator for ordered spaces X,Y . The question for this generic equation is: Can one classify M for which it holds that f ≥ 0 =⇒ u ≥ 0? In other words, when do we a have a positivity preserving property in the sense that a positive source gives a positive solution. • Our main focus is on pa...
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American Mathematical Monthly
دوره 121 شماره
صفحات -
تاریخ انتشار 2014